B.SC. SECOND SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics
Course ID: 22114

Course Code: SH/MTH/203/GE-2
Course Title: Real Analysis

Full Marks: 40
Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five questions:
(a) Prove that the intersection of an infinite number of open sets in \mathbb{R} need not be open in \mathbb{R}.
(b) Verify the Bolzano-Weierstrass theorem for the set $S=\left\{(-1)^{n}\left(1+\frac{1}{n}\right): n \in \mathbb{N}\right\}$.
(c) Give examples of divergent sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ such that the sequence $\left\{u_{n}+v_{n}\right\}$ is convergent.
(d) Examine if the set S is closed in \mathbb{R}, where $S=\{x \in \mathbb{R}: \sin x=0\}$.
(e) Give an example of an open cover of the set (0,5] which does not have a finite subcover.
(f) Find the upper and lower limits of the sequence $\left\{u_{n}\right\}$, where $u_{n}=\frac{(-1)^{n}}{n}+\sin \left(\frac{n \pi}{2}\right)$.
(g) If Σu_{n} is a convergent series of positive real numbers, then prove that $\Sigma u^{2}{ }_{n}$ is also convergent.
(h) Discuss the convergence of the series $\sum \frac{1}{n \log n(\log \log n)}, n>2$.
2. Answer any four questions :
(a) (i) If $x>0$, show that there exists a natural number n such that $0<\frac{1}{n}<x$.
(ii) If $S \subset \mathbb{R}$ and $T \subset \mathbb{R}$ be open and closed in \mathbb{R} respectively, then prove that $S-T$ is an open set and $T-S$ is a closed set in \mathbb{R}.
(b) (i) Test the convergence of the series $a+b+a^{2}+b^{2}+a^{3}+b^{3}+\cdots$, where $0<\mathrm{a}<\mathrm{b}<1$.
(ii) Let $S=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots.\right\}$. Find S^{\prime}. Show that S is not closed in \mathbb{R}.
(c) (i) Show that the set of rational numbers is enumerable.
(ii) Prove that $\lim _{n \rightarrow \infty} \frac{4^{3 n}}{3^{4 n}}=0$.
(d) (i) Use Sandwich theorem to prove that $\lim _{n \rightarrow \infty}\left[\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\cdots+\frac{1}{(n+n)^{2}}\right]=0$.
(ii) Show that the series $1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\ldots$ is conditionally convergent.
(e) (i) Show that a constant sequence is convergent.
(ii) Prove that the sequence $\left\{u_{n}\right\}$ satisfying the condition $\left|u_{n+2}-u_{n+1}\right| \leq \frac{1}{2}\left|u_{n+1}-u_{n}\right|$ for all $n \in \mathbb{N}$ is a Cauchy sequence.
(f) If the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ converge to l and m respectively, then show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}\right)=l m
$$

3. Answer any one question :
(a) (i) Prove that the sequence $\left\{u_{n}\right\}$ defined by $u_{1}=\sqrt{6}$ and $u_{n+1}=\sqrt{6+u_{n}}$ for all $n \geq 1$ converges to 3 .
(ii) Find the $\sup \left\{u_{n}\right\}$ and $\inf \left\{u_{n}\right\}$, where $u_{n}=\frac{(-1)^{n}}{n}+\sin \frac{n \pi}{2}$.
(iii) Let S be a non empty subset of \mathbb{R}, bounded below and $T=\{-x$: $x \in S\}$. Prove that the set T is bounded above and sup $T=-\inf S$.
(b) (i) Let $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be two bounded real sequences and $u_{n}>0, v_{n}>0$ for all $n \in N$.

Then prove that $\lim \sup u_{n}$. $\lim \sup v_{n} \geq \lim \sup u_{n} v_{n}$.
(ii) Prove that the intersection of an arbitrary collection of closed sets in \mathbb{R} not necessarily a closed set in \mathbb{R}.
(iii) Examine the convergence of the series $1+\frac{2^{2}}{3^{2}}+\frac{2^{2}}{3^{2}} \frac{4^{2}}{5^{2}}+\frac{2^{2}}{3^{2}} \frac{2^{2}}{5^{2}} \frac{6^{2}}{7^{2}}+\cdots$.

