B.SC. SECOND SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics

Course Code: SH/MTH/203/GE-2

Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five questions:

- (a) Prove that the intersection of an infinite number of open sets in \mathbb{R} need not be open in \mathbb{R} .
- (b) Verify the Bolzano-Weierstrass theorem for the set $S = \{(-1)^n (1 + \frac{1}{n}) : n \in \mathbb{N}\}$.
- (c) Give examples of divergent sequences $\{u_n\}$ and $\{v_n\}$ such that the sequence $\{u_n + v_n\}$ is convergent.
- (d) Examine if the set S is closed in \mathbb{R} , where $S = \{x \in \mathbb{R} : sin x = 0\}$.
- (e) Give an example of an open cover of the set (0, 5] which does not have a finite subcover.
- (f) Find the upper and lower limits of the sequence $\{u_n\}$, where $u_n = \frac{(-1)^n}{n} + \sin(\frac{n\pi}{2})$.

(g) If Σu_n is a convergent series of positive real numbers, then prove that Σu_n^2 is also convergent.

(h) Discuss the convergence of the series $\sum \frac{1}{n \log n(log \log n)}$, n>2.

2. Answer any four questions :

(a) (i) If x > 0, show that there exists a natural number n such that $0 < \frac{1}{n} < x$.

(ii) If $S \subset \mathbb{R}$ and $T \subset \mathbb{R}$ be open and closed in \mathbb{R} respectively, then prove that S - T is an open set and T - S is a closed set in \mathbb{R} . 2+3

(b) (i) Test the convergence of the series $a + b + a^2 + b^2 + a^3 + b^3 + \cdots$, where 0<a<b<1.

(ii) Let
$$S = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$$
. Find S' . Show that S is not closed in \mathbb{R} . $3+2$

(c) (i) Show that the set of rational numbers is enumerable.

(ii) Prove that
$$\lim_{n\to\infty} \frac{4^{3n}}{3^{4n}} = 0.$$
 $3+2$

(d) (i) Use Sandwich theorem to prove that $\lim_{n\to\infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2}\right] = 0.$

(ii) Show that the series
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$$
 is conditionally convergent. 3+2

Course ID: 22114

Course Title: Real Analysis

Time: 2 Hours

2×5=10

5×4=20

- (e) (i) Show that a constant sequence is convergent.
 - (ii) Prove that the sequence $\{u_n\}$ satisfying the condition $|u_{n+2} u_{n+1}| \le \frac{1}{2}|u_{n+1} u_n|$ for all $n \in \mathbb{N}$ is a Cauchy sequence. 1+4

10×1=10

(f) If the sequences $\{u_n\}$ and $\{v_n\}$ converge to l and m respectively, then show that

 $\lim_{n \to \infty} \frac{1}{n} (a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1) = lm.$

3. Answer any one question :

- (a) (i) Prove that the sequence $\{u_n\}$ defined by $u_1 = \sqrt{6}$ and $u_{n+1} = \sqrt{6 + u_n}$ for all $n \ge 1$ converges to 3.
 - (ii) Find the sup{ u_n } and inf{ u_n }, where $u_n = \frac{(-1)^n}{n} + \sin \frac{n\pi}{2}$.
 - (iii) Let S be a non empty subset of \mathbb{R} , bounded below and $T = \{-x: x \in S\}$. Prove that the set T is bounded above and sup $T = -\inf S$. 5+2+3
- (b) (i) Let $\{u_n\}$ and $\{v_n\}$ be two bounded real sequences and $u_n > 0$, $v_n > 0$ for all $n \in N$.
- Then prove that $\limsup u_n$. $\limsup v_n \ge \limsup u_n v_n$.

(ii) Prove that the intersection of an arbitrary collection of closed sets in \mathbb{R} not necessarily a closed set in \mathbb{R} .

(iii) Examine the convergence of the series
$$1 + \frac{2^2}{3^2} + \frac{2^2}{3^2} \frac{4^2}{5^2} + \frac{2^2}{3^2} \frac{4^2}{5^2} \frac{6^2}{7^2} + \cdots$$
. 4+3+3